Laboratory for Semantic Information Technology



Bamberg University

### Ontology-based Verification of Core Model Conformity in Cadastral Modeling

Claudia Hess, Christoph Schlieder

WG 2 Cadastral Science Meeting Székesfehérvár, Hungary September 2.-3. 2004



## Agenda

### 1. Motivation

- 2. Approach
- 3. Prototype
- 4. Future Research



### Bamberg University

# Approach in the context of COST Action G9

### Standardization in the cadastral domain

- Not one single cadastral system running in all European countries
- But: Conforming national cadastral models
- Development of a core cadastral data and process model
- National models as extensions of the core cadastral model

### Advantages:

- Interoperability
- Software development and reuse

### **Core Cadastral Domain Model**



Székesfehérvár, September 02, 2004



### **Greek Cadastral Model**



Modeler Greek Cadastre

Laboratory for Semantic Information Technology

Bamberg University

### **Conformity Verification**

![](_page_5_Figure_3.jpeg)

Székesfehérvár, September 02, 2004

![](_page_6_Picture_1.jpeg)

### **Iterative Modeling Process**

![](_page_6_Figure_3.jpeg)

![](_page_7_Picture_1.jpeg)

![](_page_7_Picture_2.jpeg)

## Agenda

- 1. Motivation
- 2. Approach
- 3. Prototype
- 4. Future Research

### "Ontology-based Verification of Core Model Conformity in Conceptual Modeling"

### **Conceptual Models**

- UML class diagrams
- Textual constraints of Literate UML
- Enhanced expressiveness of ontological modeling

### Reasoning about ontologies

- Computes the type of a relation between concepts
  - Indicator for the "strength" of the relation
  - Formal verification of the domain experts intentions
- Detects inconsistencies in and across core and derived models

## Transformation UML $\rightarrow$ OIL

#### XMI

<UML:Class xmi.id = 'a15' name = 'Person' visibility = 'public' isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false' isActive = 'false'>

<UML:Attribute xmi.id = 'a373' name = 'tmin' visibility = 'private' isSpecification = 'false, ownerScope = 'instance'>

</UML:Attribute>

### </UML:Class>

Literate UML

"Each Person is either a NaturalPerson or a NonNaturalPerson. No Person can be a NaturalPerson and a NonNaturalPerson." DAML+OIL

<daml:Class rdf:about="#Person" rdfs:label="Person">

<daml:Restriction> <daml:onProperty> <daml:DatatypeProperty rdf:about="#Person\_tmin"/> </daml:onProperty> <daml:hasClass rdf:resource="http:// www.w3.org/2000/10/XMLSchema #date"/> </daml:Restriction> <daml:Restriction> <daml:disjointUnionOf rdf:parseType= "daml:collection"> <daml:Class rdf:about="#NaturalPerson"/> <daml:Class rdf:about="#NonNaturalPerson"/> </daml:Class rdf:about="#NonNaturalPerson"/> </daml:Class>

![](_page_10_Picture_1.jpeg)

#### Bamberg University

### Conformity Constraints

Conformity Constraints: Set of classes and attributes of the core model which must have a corresponding element in the derived model

Define the minimum of required "similarity" between core and derived models

## **Generic Mapping Relations**

- Correspondences are identified by domain experts
  Small set of generic mapping relations
  - Correspondences are identified between
    - Classes
    - Attributes
    - Classes and attributes
  - Heterogeneity problems:
    - Structural heterogeneity: Semantically equivalent information is stored in different data structures
    - Semantic heterogeneity: Different interpretation of syntactically the same information

![](_page_12_Picture_1.jpeg)

### Example: *Person - Beneficiary*

![](_page_12_Figure_4.jpeg)

Székesfehérvár, September 02, 2004

## Correspondence in DAML+OIL

Correspondence between attributes: daml:samePropertyAs

<daml:ObjectProperty rdf:about="core\_cad.daml#Person\_SubjID" rdfs:label="Person\_SubjID"> <daml:domain rdf:resource="core\_cad.daml#Person"/> <daml:range rdf:resource="core\_cad.daml#oid"/> <daml:samePropertyAs rdf:resource= "#Greek\_cad.daml#BENEFICIARY\_BEN\_ID"/> </daml:ObjectProperty>

![](_page_14_Picture_1.jpeg)

#### Bamberg University

## Types of Correspondence

- Reasoner determines type of the identified correspondence by ontological reasoning
  - Types:
    - Equivalence
    - Subsumption
    - Overlapping
    - Approximate Mapping
- Special Cases
  - Restriction of the range of an attribute
  - Co-extensional concepts without corresponding attributes
  - Corresponding packages

![](_page_15_Picture_2.jpeg)

## Query and Interpretation

| Туре        | Query to RACER                          |
|-------------|-----------------------------------------|
| Equivalence | concept-equivalent?                     |
| Subsumption | concept-subsumes?                       |
| Overlapping | Create new class + concept-satisfiable? |

### Example:

(concept-equivalent?

|core\_cad.daml#Person||Greek\_cad.daml#BENEFICIARY|);

Result: True or false

- Interpretation: The classes Person and BENEFICIARY are, according to the identified correspondences, overlapping.
- Is this type of correspondence sufficient?

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

## Agenda

- 1. Motivation
- 2. Approach
- 3. Prototype
- 4. Future Research

![](_page_17_Picture_1.jpeg)

## Prototype (1/2)

- Demonstrates the feasibility of applying the theoretical approach
- Most important features of the theoretical approach are realized
- Verification of conformity between
  - Core cadastral domain model and
  - Greek cadastral model

Laboratory for Semantic Information Technology

Bamberg University

### Prototype (2/2)

![](_page_18_Figure_3.jpeg)

Székesfehérvár, September 02, 2004

### "Person"-Classes: 1st Iteration

![](_page_19_Figure_3.jpeg)

Székesfehérvár, September 02, 2004

**Bamberg University** 

![](_page_20_Picture_1.jpeg)

## Results of the 1<sup>st</sup> Iteration

- Correspondences only of the overlapping type: Person – BENEFICIARY, NaturalPerson – BENEFICIARY, NonNaturalPerson – BENEFICIARY
- No relation between the specialization classes
- No corresponding attribute for t\_min and t\_max (class Person)
- No corresponding attribute for BEN\_TYPE (class BENEFICIARY)

### Proposed Modifications: 2<sup>nd</sup> Iteration

![](_page_21_Figure_3.jpeg)

Székesfehérvár, September 02, 2004

![](_page_22_Picture_1.jpeg)

#### Bamberg University

## Results of the 2<sup>nd</sup> Iteration

### Person and BENEFICIARY are equivalent

Temporal aspects must be either added to the class BENEFICIARY or omitted in the class Person!

### Equivalence between the specialization classes:

- NaturalPerson equivalent with NATURAL,
- NonNaturalPerson equivalent with LEGAL.

![](_page_23_Picture_1.jpeg)

## **Evaluation**

### Evaluation of the example

- Poor results of the first iteration due to the limited number of formalized correspondences
- First iteration provides advice for the subsequent iteration
- Results of the 2<sup>nd</sup> iteration must be evaluated by domain experts

### Next step:

- Refinement of the correspondences between core and Greek cadastral model
- 2<sup>nd</sup> iteration with all refined correspondences
- Elaboration of the attribute-level of core and derived models

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

## Agenda

- 1. Motivation
- 2. Approach
- 3. Prototype
- 4. Future Research

# Future Research in the Conformity Verification

Refinement of the types of relations:

- For concepts: complementOf, ...
- For attributes: inverseOf, subPropertyOf
- More detailed examination of inconsistencies
- Extension of the conformity verification to process models